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A new type of parttcle simulation model based on the gyrophase-averaged Vlasov and 
Poisson equations is presented. The reduced system, in which particle gyrations are removed 
from the equations of motion while the finite Larmor radius effects are still preserved, is most 
suitable for studying low frequency microinstabilities m magnettzed plasmas. The resultmg 
gyrokinetic plasma is intrinsically quasineutral for E., < pY (=p,( T,/T,)‘,‘). Thus, without the 
troublesome space charge waves in the simulation, we can afford to use much larger time steps 
((oH At 2 1) and grid spacings (d.u,/p, 2 1) at a much reduced noise level than we would 
have for conventional particle codes, where wH= (/c,/k,)(l,/p,) mpr. and k,, 4 k,. Further- 
more, rt is feasible to simulate an elongated system (L,, &L,) with a three-dimensional grad 
using the present model without resorting to the usual mode expansron technique, smce there 
1s essentially no restriction on the size of Ax,, in a gyrokinetic plasma. The new approach also 
enables us to further separate the time and spatial scales of the simulation from those 
associated with global transport through the use of multiple spatial scale expansion. Thus. the 
model can be a very efficient tool for studying anomalous transport problems related to 
steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to 
other areas of plasma physics. 0 1987 Academic Press, Inc 

I. INTRODUCTION 

Gyrokinetic particle simulation consists of using the existing simulation techni- 
ques to solve the gyrophase-averaged Vlasov-Poisson system, in which the particle 
gyration is removed from the equations of motion while the finite Larmor ra 
effects are retained [ 1, 21. The reduced system has been obtained through the use of 
well-known gyrokinetic ordering for magnetized plasmas. The resulting nonlinear 
gyrokinetic equations satisfy the basic requirements for simulation that they 
preserve the characteristic form of the dynamic equation and satisfy both particle 
and energy conservation. The new scheme is most useful for studying low frequency 
gradient-driven microinstabilities in tokamaks. In the previous paper Cl], we have 
demonstrated the feasibility of such an approach. Here, we will present the 
rmmerical aspects of the gyrokinetic particle simulation model. 

It is generally agreed that conventional particle codes are not practical for study- 
ing low frequency quasi-neutral-type of phenomena, because of the disparate time 
and spatial scales involved. The fundamental problem is the high frequency space 
charge waves, characterized by upe and A,, which impose severe restrictions on the 
time step and spatial resolution used in the code [3,4]. Even for the model based 
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on the guiding-center electrons and gyrating (Vlasov) ions [S], which was 
developed for the purpose of investigating low frequency drift-type instabilities in 
magnetized plasmas, space charge waves in the form of lower hybrid oscillations 
still exist. In addition, their presence gives rise to a very high noise level in the 
simulation plasma, which can actually suppress the growth of the low frequency 
quasineutral waves, whose equilibrium fluctuation energy is a factor of (k1,)2 
lower. Furthermore, when the saturation amplitude of the instability is lower than 
the noise level, the nonlinear physics can also be obliterated. To overcome the dif- 
ficulty of excessive noise by increasing the number of particles in the simulation can 
be prohibitive. Thus, an unrealistically large background density gradient has to be 
employed for simulating drift waves in order to produce strong enough instabilities. 
However, when the scale lengths for the zeroth-order-density and for the pertur- 
bation become comparable in magnitude as in Refs. [S-S], profile modification 
may dominate over other nonlinear processes. Since, under realistic experimental 
conditions in tokamaks, the background inhomogeneities tend to persist as 
quasistatic profiles because of the continuous replenishment of plasma particles, it 
precludes profile relaxation as a viable nonlinear mechanism. Thus, it is difficult to 
make meaningful comparisons between the simulation results and the experimental 
observations. These are some of the pitfalls confronting the conventional particle 
codes in simulating low frequency waves. 

In our present model, the difficulties associated with space charge waves no 
longer exist, since a gyrokinetic plasma is intrinsically quasineutral for 2, <p, 
( =PKJW~)~ h w ere pi is the ion gyroradius. Following the procedures developed 
by Langdon [3,4] based on the leap-frog scheme for particle pushing and linear 
interpolation for charge sharing, we have found that the limitations on the time 
step and the grid spacing become much less stringent for the gyrokinetic model. 
Instead of the usual mpe At 7 1 and Ax 7 AD for unmagnetized plasmas, the 
stability conditions now become oN At 2 1 and Ax, 2 ps, where oH= 
v,,/k,N%/%P2 Q2,= (k,,/kL)MPs) Wpe is the electrostatic shear-Alfven wave 
frequency, 52, = eB/m,c, k,, <k, E k, and subscripts 11 and I denote quantities 
parallel and perpendicular to the external magnetic field, respectively. Results from 
the numerical analysis of our model also indicate that there is essentially no 
limitation on the size of Ax,,. Compared with the guiding-center electron code [S], 
where the time step is limited by OJ,, At 2 1 and grid spacing by Ax, = Ax,, r ;1,, 
the present scheme represents orders of magnitude improvement. 

For reasons of accuracy rather than stability, the Courant condition of 
k,,ure At= (a~At)(ki~s) ? 1 imposed by the electron transit time also has to be 
satisfied in our simulation. For k,ps G 1 modes, which usually have the largest 
growth rates for microinstabilities and are the most important ones in the 
simulation, this condition does not constitute an additional constraint. The restric- 
tion of k,v, At q 1, where vE = cE x B/B*, is usually not a problem for tokamak 
plasmas. In the presence of a sheared magnetic field, as we will discuss, normal 
modes associated with oH do not exist at all and local instabilities due to co,At > 1 
are also absent. Therefore, the time step in the simulation can be solely determined 
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by the mode frequency of interest (e.g., the diamagnetic drift frequency, o.,+)- The 
scheme for satisfying the additional requirement of (k,,),,, v,,At q 1 will be 
discussed. 

The restriction on Ax, poses no difficulty at all for the gyrokinetic model. A grid 
of the size of p, is needed, at any rate, to resolve accurately the fluctuations for the 
modes with k, ps g 1, which, as we have mentioned before, are the most irnp~rta~~ 
ones in the simulation. 

As for the three-dimensional simulation, we can now afford to use a very coarse 
grid in the parallel direction for which Ax,, $ p, to model an elongated system with 
E,, $ L,. Thus, the mode expansion technique [9] commonly used in the conven- 
tional codes is not the only alternative here. The grid instability, which may still 
exist in the 3D gyrokinetic simulation when modes with k, p, 4 0.21 are included, 
can be suppressed by the higher order interpolation schemes [lo]. The com- 
bination of finite-size particle effets and implicit particle pushing schemes [ I1 ] can 
also stabilize all the numerical instabilities caused by oH At > 1, usually related to 
k, P,~ 4 1 modes in the 3D code. However, most interestingly, all the alias-induced 
numerical growths mentioned here may altogether be eliminated by magnetic shear, 
on which we will elaborate. 

Because of the nature of the gyrophase-averaging processes [I, 23, the 
gyrokinetic Vlasov equation is expressed in the gyrocenter coordinates, whereas the 
original particle coordinates are retained for the gyrokinetic Poisson equation. To 
circumvent the numerical difficulties involving coordinate transformations, t 
simulation scheme described in Ref. [I] used the analytically transform 
gyrokinetic Vlasov equation in the particle variable space by assuming that, non- 
linearly, ion perpendicular temperature is zero. In the present paper, we have 
developed an efficient numerical method to expedite the transformation, which can 
accurately represent the gyrophase-averaged quantities for arbitrary values of K-,p,, 
linearly as well as nonlinearly. As for the gyrokinetic Poisson equation, it is a linear 
second-order differential equation in our regime of interest and can be solved by an 
iterative scheme. 

The fact that the reduced Vlasov equation is in the gyrocenter coordinates makes 
it possible for us to perform the multiple scale expansion on the spatial derivative 
term of the equation so as to separate the equilibrium spatial scale lengths from 
those of the perturbations. In doing so, the zeroth-order density and tempe~atl~~e 
gradients become input parameters for the simulation. By holding them constant in 
time, we s ed in removing from the simulation the time and spatial scales 
associated global transport. Since the model now contains only the fr~q~e~c~ 
and the spataal scale of interest, it is most suitable for studying steady-state drift- 
wave turbulence problems. Furthermore, the application of multiple spatial scale 
expansion also simplifies the boundary conditions for the particles and waves in (he 
simulation, which, in turn, greatly facilitates the diagnotics for particle nd energy 
transport. 

Finally, one important aspect of the gyrokinetic plasma is its low noise level, T 
important property has been investigated in Ref. [12], in which the equilibrium 
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fluctuation field energy is shown to be at a minimum in the gyrokinetic regime. 
Thus, for the same number of particles, we can simulate a much larger volume of 
plasma with the present model than with conventional codes. 

In recent years, various implicit schemes have been developed for the purpose of 
eliminating unwanted high frequency oscillations from the simulation through 
numerical means [ 11, 13-151. These approaches represent a basic difference in 
philosophy from the scheme considered in this paper, where the removal of the 
space charge waves is contingent upon the underlying physics. Other numerical 
methods to achieve long time step simulation have also been developed based on 
orbit averaging [ 161 and electron subcycling [ 171. Under certain conditions, some 
of these numerical schemes can be very useful for us. 

The paper is organized as follows. In Section II, the governing equations in an 
electrostatic slab and their conservation properties are described. The pertinent 
numerical schemes are presented in Section III. Section IV discusses the simulation 
schemes based on multiple spatial scale expansion. Numerical properties of the 
gyrokinetic plasma are presented in Section V. Some relevant simulation results are 
described in Section VI, and discussion and concluding remarks are given in 
Section VII. 

II. GYROKINETIC FORMALISM 

The gyrophase-averaged Vlasov and Poisson equations have been derived earlier 
[ 1,2] based on the well-known gyrokinetic ordering, which assumes that o/Q, p/L, 
k,,/k,, and e@/T are of order E, where o is the frequency of interest, 5-3 is the 
gyrofrequency, p is the gyroradius, L is the equilibrium scale length, k,, and k, are 
the perturbed wave numbers parallel and perpendicular to the magnetic field, 
respectively, e@/T is the electrostatic potential normalized to average plasma tem- 
perature, and E is a smallness parameter. The gyrophase-averaging procedure not 
only removes the gyrophase-dependent quantities from the reduced system, but also 
eliminates the fast gyromotion which gives rise to the unwanted high frequency 
waves, while retaining the important finite Larmor radius effects. 

The resulting gyrokinetic Vlasov equation in slab geometry valid to order s2 can 
be written in terms of gyrocenter variables as [ 1,2] 

where 

DqDt = aqat + v,, 6. dF/aR - (&d2)(aY/aR x 6). aF/aR 

- (q/m)(d!P/dR .6) aF/av,, = 0. (1) 

V’(R) = G(R) - (q/2T)(v,lQ)2 IWRW,12, (2) 

FE F(R, ,u, u,, , t) is the gyrophase-independent distribution function, p E $12, 
Sz 3 qB/mc, 6 = B/B, B is the external magnetic field, v, E ( T/m)‘j2, D(R) and G(R) 
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are the electrostatic potentials at the gyrocenter, and q is the signed c 
Moreover, the gyrocenter position variable R is related to the particle position 
variable x through R z x - p, where p z -vI x6/Q is the particle gyroradius. 
Equation (1) is valid for both the electrons and the ions. However, for the electrons, 
the finite gyroradius effects are negligible and Eq. (1) reduces to the usual drift- 
kinetic equation for p + 0. 

The gyrokinetic Poisson equation in particle coordinates takes the form of [l, 21 

V’@ - z(@ - $)/AL + (p,/A,)” V, f ((n, - n,) V,@/n,) = -he(ii, - n,), (3) 

where the electrostatic potentials @ and 6 as well as the number density ii,, n,, and 
are functions of x, V rd/ax, A2, EZ T,/4woe2, 2~ TJT,, psz ,:‘;P,~ 

;f= ( T,/m,)1i2/0,, and subscripts e and i denote species. The distribution function, 
potential, and number density in Eqs. (1) (2) and (3) can be related throug 
Fourier transforms of 

Q(x) = c Q(k) exp(ik .x) and F(R) = c F(k) exp(ik. 
k k 

The coordinate-transformed quantities then become 

6(R) = c G(k) J,Jk, u,/sZ) exp(ik .R), 
k 

E(x) = c j” F(k) J,(k Iu,la)ex~(ik.x)d~~u,,, 
k 

and 

6(x) = c @(k) T,(b) exp(ik .x), 
k 

(41 

where the ordinary Bessel function 

JO = (exp(ik. p) jrp (‘71 

is the result of the gyrophase-averaging process, T,(b) z I,,(b) exp( -b) comes from 
the second gyrophase averaging with respect to the Maxwellian background, 
b = kipf, I0 is the modified Bessel function, Q(R) and n(x) correspond, respec- 
tively, to G(R) and n(x) with J,= 1, and n,- (n(x)), is the spatially average 
number density. In Eq. (3), p, = 0 is assumed, and the additional terms on the left- 
hand side of the equation are the contributions from the ion polarization density 
response. For b G 1, the lowest order term becomes (p,/A,)’ V: @. Since pS s i,, for 
the usual tokamak plasmas, the Debeye shielding term of V2@ is much smaller by 
comparison and, thereby, can be ignored in Eq. (3). (This is true for arbitrary value 
of b.) Finally, in Eqs. (2) and (3), we have kept only the leading terms 
small gyroradius expansion for O(c2) quantities, i.e., terms of O(k41.p 
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ignored. This approximation considerably simplifies the numerical scheme and can 
be justified on physics grounds. 

The Hamiltonian nature of our equations [2] allows us to obtain simple 
expressions for various conservation laws for Eqs. (l)-(3). From the simulation 
point of view, the most relevant ones are particle and energy conservation. The for- 
mer is rather trivial and can be verified by taking the zeroth moment of Eq. (1) in 
(R, p, v,,) space. The energy conservation, which can be derived by following the 
procedure given in Ref. [2] takes the form of 

(8) 

where (...) denotes spatial average in the appropriate coordinate system. The first 
two terms can be readily identified as the usual particle kinetic energy and elec- 
trostatic potential energy, respectively. The last two are the ion sloshing energy; the 
second one comes from the O(s2) terms in Eqs. (2) and (3). For b 4 1, we have 

sloshing energy/potential energy G (c~,,/fi,)~ = (p,/A,)‘. 

Thus, for pS $A,, most of the field energy in the gyrokinetic plasma is associated 
with the ion sloshing motion in the perpendicular direction in response to the elec- 
trostatic fluctuations. Consequently, the potential energy, which is related to the 
V2@ term in Eq. (3), is negligible. 

III. NUMERICAL TECHNIQUES 

In this section, we will discuss the numerical schemes for solving the gyrokinetic 
Vlasov-Poisson system, Eqs. (l)-(3), based on, for the most part, the existing 
explicit particle simulation techniques. Applying the discrete representation for the 
distribution function of N particles, 

F= 2 4R - R,) @P - pJ) 40 - v,,,), (9) 
J=l 

to Eq. (1 ), we obtain the equations of motion in the gyrocenter coordinates for the 
jth gyrokinetic particle as 

and 

(10) 
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where Y is the gyrophase-averaged potential defined in Eqs. (2) and (4). Equations 
(IO) and (11) d re uce to the familiar guiding-center equations of motion for the 
drift-kinetic particles when p = 0 (or p = 0). Thus, the only difference between the 
two types of particles is in the form of the electrostatic potential with which they 
interact. Consequently, the leap-frog and/or the predictor-corrector schemes for 
pushing the drift-kinetic particles described in Ref. [S] can also be used here for the 
particles, once Y is known. However, the method for calculating Y for each 
individual particle is complicated by the appearance of J, in the equation for G. 

The gyrokinetic Poisson equation, Eq. (3), in the Fourier k space becomes 

where 6@ = e@/T,. 6n z (n - n,)/nO, 6ti 5 (fi - no&,,, with 6, as well as n, defined in 
Eq. (5). Because of the presence of the O(E’) terms, Eq. (12) is in the form of an 
inhomogeneous Fredholm equation of the second kind and can easily be solved 
using the method of successive approximation [IS], once the particle number 
densities are given. Here, again, the difficulty comes from the evaluation of fi, which 
involves J,. 

As we can see, Eqs. (lo)-( 12) can be solved straightforwardly with the standard 
numerical methods. The only issue remaining is the coordinate transformations of 
Eqs. (4) and (5). Since the calculation of .JO using table lookup for each ind~v~d~a~ 
particle to account for its interaction with all the waves in the system is co 
putationally prohibitive, alternative methods are needed. 0ne obvious way is to 
carry out the transformation analytically at the sacrifice of some important physics 
as reported in Ref. [ 11. A better approach is to use the power series expansion sf 
J, z 1 - (k, p)*/4 + (k, ~)~/64.. . . The drawbacks here are the additional computer 
storage (arrays) required for the calculation and the unphysical behavior at large 
k,p when the resulting jJ,\ becomes larger than 1. 

The scheme we are about to discuss is efficient, more versatile, more 
nature and needs no additional storage. The starting point for its ~~rivati~~ is to 
rewrite Eqs. (4) and (5) as 

and 

)6(x-R-p)& (13, 

where ( )q = f &p/2n denotes gyrophase average. Equations (13) and (14) can be 
easily verified using the relation of Eq. (7). From 

@(FL,) = j @b(x) 6(x -x,) dx, (151 



250 W. W. LEE 

where xi = Rj + pj is the actual position of the jth particle, we have 

W,)= (@(x,)>,=C Q(k) Jdk,u,,/Q) ew(jk.Rj). (16) 
k 

Thus, the potential at the gyrocenter position R, is the gyrophase-averaged poten- 
tial of the particle at its actual position x1 as it traverses a circular path centered at 
R, with the gyroradius pJ. Analytically, Jo accounts for the difference between the 
potential measured directly at R, and the average potential. 

By substituting Eq. (9) into Eq. (14), the expression for number density in terms 
of individual particle positions can be obtained as 

fi(x)= g (~(x-x,)).=~ (f exp( -k-R,) J,(k,v,,/SZ)/V exp(ik.x), (17) 
J=l k J=l 

where I/ is the total volume. Here, the relation of 

6(x) = C exp(ik .x)/V 
k 

is used in the derivation. Again, Jo accounts for the difference between calculating 
the number density at R, and at x,. Equation (17) also relates the number density 
at x with the gyrophase-averaged contribution from the individual particle as it 
travels in a circular path. In other words, for calculating S(x), each gyrokinetic 
particle can be viewed as a uniformly charged ring with its center located at R, and 
with radius pJ. 

Thus, through Eqs. (16) and (17), we have established the correspondence 
between the gyrophase-averaging procedures in the Fourier k space and those in 
the (x/R) configuration space. The latter is apparently much more suitable for 
numerical calculations. More specifically, the evaluation of m(R,) for the jth par- 
ticle from the known potential field Q(x), given by Eq. (12) can be carried out by 
simply taking the average of @(x,)‘s for a number of locations on a circle, where 
xJ = R, + p,. We can then use this $(R,) to calculate Y(R,) in Eq. (2) for the actual 
potential of the particle. For pushing particles with Eqs. (10) and (1 l), one can 
utilize the equivalent operation of 

@(R)/dR 1 RI.@, = (WXW I,), (18) 

to evaluate the field for each particle, in which the O(s2) part can be calculated 
directly at Rj. Likewise, the evaluation of n(x) can be carried out by summing up 
the contributions from the gyrokinetic particles represented by rings of charges. For 
each individual particle at Rj, the charge is equally distributed in a number of 
locations of xi’s on a circle. The resulting n(x) then becomes the input for Eq. (12). 

The issue now is to determine the optimal number of points (locations) on a ring 
for the accurate representation of the gyrophase-averaging procedure. This is 
critical because it directly affects the computational time and, ultimately, determines 
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=$ Jo+ 

FIG 1. Numerical scheme for coordinate transformation for the jth particle. 

the viability of the scheme. One way to tackle the problem is to study the result of 
numerical integration of exp(ik -p) in Eq. (7) for various d$s. Obviously, a large 
number of integration steps, or a small dq, is most accurate, but undesirable. 
Letting ~CP = 2nlM, where M is the number of integration steps, we can easily show 
that 

(exp(ik.p)),= f J,(k,p) f exp(~2~nl/~)J~ 
n= --m I= 1 

= f, J,(k,p) sin(2nn) cot(n;n/M)/2M. 
n= --m 

(19) 

As we can see, for M= 1, all Jn’s have nonvanishing coefficients. Therefore, it is the 
poorest representation for the gyrophase-averaging process. In the other limit, for 
A4 = co, we recover Eq. (7). The numerical scheme for coordinate transformation 
and the results for using different values of M in Eq. (19) are shown in Fig. 1. Since 
Jo 9 J4 for k,p 2 2, the scheme with M= 4 is most ideal for studying microtur- 
bulence, where the experimental measurements have indicated that the majority of 
the fluctuation energy is in the region of 0 < k,pl 7 1 [19]. Thus, a four-point 
representation for the gyrokinetic particle is adequate for calculating G(R,) and 
C(x) in Eqs. (16) and (17). For those particles with k,p > 2 in the simulation, the 
scheme does not describe their behavior correctly. However, the resulting 
(exp(ik I p) ), is always much less than one. Thus, the problem is not serious at all 
compared with the Jo expansion scheme. If the physics for k,p > 2 is important, 
one should then use a larger M for the calculation. For the electrons, where p = 0, 
the difference between Ri and x, disappears. Hence, the scheme with M- I is 
sufficient, which is simply the usual guiding-center model for the drift-kinetic 
particles [5 1. 

IV. MULTIPLE SPATIAL SCALE EXPANSION 

As stated earlier, the purpose of multiple spatial scale expansion is to enable us 
to develop a numerical model which simulates the realistic experimental condition, 
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where, insofar as microinstabilities are concerned, the background inhomogeneity is 
quasistatic. Let us start with the expansion of 

aF/aR, =+. &(aqaeR.) + aqaR,, (20) 

where &RI represents the spatial variations for the zeroth-order quantity, and R, is 
now associated with the scale lengths of the perturbations only. Assuming that 

F, E (l/&) n,(~R,)[rn/T,(&R.)l~‘~ exp[ -mv2/2T,(aR,)], (21) 

is the background distribution, we find 

&(dF/dsRL)g -KF, (22) 

where 

Kz [Kn- (3/2-v2/2v;) KT], (23) 

K, = -~(an,/aER,yn,, KT= -E(azyadtLy~o, and u2 = u;, + II:. Substituting 
Eqs. (20) and (22) into Eq. (l), we then obtain 

DF/Dt+ (q/mf2)(a~/aRX6)e KF=O, (24) 

in which the scale lengths for the background and the perturbations are completely 
separated, and the distribution F contains only spatial variations for the pertur- 
bations. Equation (24) is similar to the equation used in many theoretical analyses. 
The only difference comes from the term associated with the background 
inhomogeneity K, for which the distribution function F, for example, is replaced by 
F, in Eq. (21) [20-221, or by a spatially averaged F. 

However, Eq. (24) is not suitable for particle pushing because it lacks the conser- 
vation properties. The proper equation can be constructed from Eq. (24). It takes 
the form of 

DF/Dt+(q/mQ)[(BF/BRxI;)~KY+((aY/aRx6)~KF]=O. (25) 

Equation (25) conserves number of particles and, together with Eq. (3), also con- 
serves energy. The latter is again given by Eq. (8). Since the multiple spatial scale 
expansion is based on 1 kl $ /KI, the difference between the nonlinear physics 
described by Eqs. (24) and (25) is rather insignificant and is of higher order in E, 
provided that modes with 1 k. K/K] < IKI for !P are excluded from Eq. (25). 

Equations of motion for the individual particles given by Eq. (25) can be derived 
using the distribution function F defined in Eq. (9). They become 

and 

dv,,,/dt = -(q/m) awaR .fi h+,> (27) 
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for the jth particle. The important feature here is that Eqs. (26) and (27) differ from 
the original gyrokinetic equations of motion, Eqs. (10) and (ll), by only one term; 
and it is the term which accounts for the effect of background inhomogeneity. Thus, 
by keeping K, and K~ constant in time (and space), we can indeed investigate 
steady-state microturbulence problems with the new set of equations. As for t 
initial loading in the simulation, one can use spatially uniform distribution for the 
particles (with the Maxwellian distribution in the velocity space, if desired) at ? = 0, 
since the distribution function F in Eqs. (24) and (25) describes only spatial pertur- 
bations. Thus, not surprisingly, the separation of the disparate spatial scales in the 
simulation makes it possible for us to study gradient-driven microinstabilities using 
homogeneous plasmas. Moreover, the freezing of the background inhom 
also effectively removes the global transport time scale from the simulatio 
Eqs. (26) and (27), as well as Eq. (25), contain only the spatial and time 
interest, in which the undesirable scales have been eliminated analytically 
beforehand (through the processes of gyrophase averaging and multiple spatial 
scale expansion). The idea of multiple spatial scale expansion was first proposed by 
the authors of Ref. [23]. 

It should be mentioned here that the particle dynamics depicted by E 
no longer incompressible in the (R, p, v,,) phase space. Nevertheless, the fact that 
particle simulation techniques are still applicable in this case can be understood as 
follows. Rewriting Eq. (9) as 

F(Z)= ; 6(Z-Z,), (28) 
,=1 

where Z 5 (R, ,u, D,,) or the original phase space variables (x, v), one can show that 
particle pushing is actually solving an equation of the type 

aqat+ (ajaz). (i~)=o, WI 

where i ( E dZ/dt) is the equation of motion. This is exactly the form for Eq. (25 ). 
When the phase space fluid is incompressible, i.e. (a/S?) . i = 0. Eq. (29) reduces to 
Eq. (1) (or the Vlasov equation). Thus, incompressibility is not the prerequisite for 
particle pushing. 

Let us now discuss the diagnostics for the particle and energy flux for the new 
scheme. As stated earlier, these measurements are greatly facilitated by the use of 
multiple spatial scale expansion and are quite different from those in which tbe 
background inhomogeneities are actually present. Applying Eq. (20) to Eq. (1) 
and taking the zeroth moment in (p, vi,) of the resulting equation as well as by 
performing the spatial average, we have 

an,/at+ (a/a&x). b~,(r),~ =o, (30) 

where 
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is the particle flux, and y1,,, fi, and II are defined in Eq. (3). For K, = ~~2, i.e., the 
density gradient is in the x direction, the particle diffusion coefficient becomes 

(32) 

Particle flux F can also be 
the substitution of Eq. (17) 
as 

expressed in terms of individual particle motion. With 
into Eq. (31), the flux in the x direction can be written 

(r,),= 2 v,(R,)IN, (33) 
,=l 

where vEll- - (c/B)(cW/c?R) x 6. S is the particle drift, and the evaluation of which 
involves the use of Eq. (18). The calculation of Eq. (33) for the electrons is 
considerably simplified, since p = 0 and R, = xi. Multiplying Eq. (3) by 
- (c/B)(a@/ax) x 6 S and invoking the periodic boundary conditions for the poten- 
tials, we arrive at 

<re.x>, = <rrx>,, (34) 

where the flux is given by Eq. (31). Thus, particle flux is ambipolar for our system. 
Before we examine the issue of energy flux, let us describe briefly the gyrokinetic 

expressions for some of the related fluid quantities in the simulation. Following the 
same procedures in obtaining Eqs. (14) and (17) for the number density, we find 
that the current density can be evaluated by 

+) =q j v,,O, /A 
t 

v,,) W-X+P) a & do,, 
> 

=4 f o,,,@b -x,bp (35) 
‘p J=l 

and the expression for the energy density is 

P(x)=(m/3) ~u2F(R,~,v,,)6(R-x+p)dR~~~v,, 
l ) w 

= (m/3) f ‘,2<‘(‘- xJ)>,’ 

J=l 
(36) 

Thus, the numerical calculations of these quantities are similar to the manner in 
which number density is obtained as depicted in Fig. 1. 

The method for measuring energy flux in the simulation can now be derived as 
follows. Applying Eq. (20) to Eq. (1) and taking the II* moment of the resulting 
equation, we obtain, after performing the spatial average, 

. 
swat f (aiaw~ c~~Q~,I = w,, (37) 
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where PO- (P(x)), is the average energy density, 

Q = -(c/~X(~@Px x~N%,) - W)(q/~)WW2 (Wx) I~@Px.l’ x fjW&JI 

(38) 
is the energy flux, 

s= 42/3u,wia~,,)- w2w7w,i~2)~ S,lwa~,,) mmdi (39) 

is the source term, with J and H given by Eqs. (35) and (36), and P corresponds to 
P with p=O. For JiiO- (J,,(x)),=O, which gives PO=n,T,, and for K,=K,%, and 
K~= rc,%. Eq. (37) yields the thermal diffusivity in the inhomogeneous x direction 
as 

x = (Qr>xl(~ + ~4. (40) 

Energy flux can also be measured through individual particle motion, Substitutive 
Eq. (36) into Eq. (38), we obtain 

(QI->, = f dR,)(~,l~,)‘/3~, (41) 
,=l 

where vE.X is again the particle drift defined in Eq. (33). Likewise, with the sub- 
stitution of Eq. (35) into Eq. (39), the spatially averaged source term becomes 

(s), = 2 v,,,(MPR -@I,,, (42) 
,=l 

in which the use of Eq. (18) is again necessary for the calculation. 
Thus, the ease with which the flux and diffusion measurements can be carried out 

using the present simulation scheme is evident. It differs greatly from conventional 
particle simulation, for which the only effective tool is the measurement of tesr par- 
ticle diffusion. However, test particle diffusion does not give any information on 
particle and energy flux. Such information can only be ascertained through t 
study of the global features of the simulation. The difficulty here is that t 
simulation volume in the conventional codes is usually too small to be able to 
describe the global phenomena accurately. This deficiency is removed by the 
present simulation scheme with the multiple spatial scale expansion. By doing so, 
we can now view the simulation plasma as a small segment of a much larger system 
(as if we are dealing with a homogeneous plasma). By allowing the simulation 
plasma to interact with the neighboring system through the appropriate use of 
boundary conditions for the waves and the particles, we can study a variety of 
realistic problems without simulating the total plasma volume. For such an 
arrangement, the global flux and diffusion of the simulation can be construed as the 
local quantities for the larger system. One simple example is the use of perio 
boundary conditions for the investigation of gradient-driven microinstabilities in a 
shearless slab C2G-221. 

581/72/I-17 
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V. NUMERICAL PROPERTIES 

Numerical properties for the simulation plasma using the Vlasov particles have 
been extensively investigated since the inception of particle simulation more than 
two decades ago [24,25]. The two important aspects, which are of particular 
interest to us, are the restrictions imposed by the space charge waves on the time 
step (ape At 2 1) C41 and grid spacing (dx 2 /2,) [3]. In this section, we will 
follow the same procedures as in Refs. [3, 41 to establish the stability criteria for 
the gyrokinetic plasma. 

The starting point is the linear dispersion relation for a gyrokinetic plasma in 
slab geometry obtained from Eqs. (l)-(3). 

D = 1+ (knD12 
I[l+r+(l-~)x~+(r+~)x,lnj=O, (43) 

where 

Z is the usual plasma function, o* - k,p,rc,p,O, is the diamagnetic drift frequency 
produced by the density gradient in the x direction, r, % 1 - (k,p,)’ for small 
k,p,, and a denotes species. For the cold plasma response (o/k,, $ v,,) and o,, = 0, 
the eigenmode frequencies for Eq. (43) are 

(45) 

for pS B Lo. These are the damped quasineutral oscillations, which can be identified 
as electrostatic shear-Alfven waves. (The modification of wH by o* is small and is 
negligible for the analysis.) Our focus here is to understand the stability properties 
of these modes in relation to the sizes of the time and space steps used in the 
simulation. Their contribution to equilibrium fluctuations will also be examined. 

We begin the numerical analysis by first rewriting Eq. (44) as 

Xx -. -1 + (k,,v,J2 jam rexp{iwt-(k,,v,,t)‘/2} dt. (46) 

By letting t = q dt, the integral here can be evaluated numerically by 

s 
mdt--f At. 

0 C/=0 
(47) 
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Langdon has elegantly demonstrated that the size of the integration step At in 
Eq. (47) corresponds directly to the time step used in the leap-frog particle posting 
scheme in the simulation [4]. Substituting the discrete form for X, into Eq. (43)> 
and invoking the quasineutral condition and the cold ion approximation, we arrive 
at 

for k 2 k, 9 k,, . By keeping only the first nontrivial term in the series, we find that 
the maximum growth of the unphysical instability, if it exists, occurs at 
(k,p,)(w, dt) = ,,/?. The corresponding growth rate is w,dt = 2 ln(o, dt) - 1, 
which gives the onset of the instability at oH At = 1.65 with k,ps = 0.86, and yiel 
larger growths for the smaller k,p,‘s. Thus, the stability condition can roughly be 
expressed as 

As in Ref. 141, the instability originates from the aliasing effects on a temporal grid. 
The dispersion relation for an unmagnetized plasma and the resulting stability 
criterion given by Ref. [4] can also be recovered from Eqs. (48) and (49) through 
the substitutions of wH and p, by o,, and 1,, respectively. Besides the stability con- 
sideration. the time step also has to satisfy the particle transit time requirement of 

so that accurate plasma response, i.e., Eq. (48), can be reproduced in the 
simulation. The difference between Eqs. (49) and (50) is that violation of the latter 
will not lead to numerical instability. Nonetheless, both equations have to be 
satisfied in the simulation. Since microinstabilities are generally most unstable for 
the modes with k,p, z 1 and their inclusion in the simulation is essential, the two 
conditions then become identical. Thus, there is no reason to further increase wH At 
(except for 3D simulation, which we will discuss). This is quite different from the 
unmagnetized cases, in which implicit schemes can be utilized to increase w,, dl in 
simulating k/Z,+ 1 modes [Ill, 13, 141. As we can see, orders of magnitue 
improvement in time step over the conventional codes is indeed realized with the 
present scheme without resorting to implicit particle pushing. The condition of 
k,v,At 7 1 can usually be satisfied without any difficulty and does not co~~tit~t~ 
an additional constraint. 

In the presence of shear, radial eigenmodes associated with mN do not exist at all. 
This property has been verified using a mode equation of the form, a2@/ax2 + 
Q(w, At) @ = 0, obtained from Eq. (43) for r. z 1 - (k,~,)~ -i- pf(a2/dx2) a 
k,, = k, x/L,, where L, is the shear scale length. Analytically, for w, = 0 and At 
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its absence can be understood from the fact that modes from the CX~ branch do not 
satisfy the outgoing wave boundary condition and have no spatially evanescent 
solutions (away from the rational surface at k,, = 0). The mode equation has also 
been solved numerically using a WKB-shooting code [26]. The results have 
indicated that the only eigenmodes in the system are those associated with m*, and 
instabilities induced locally due to k,,v,, At> 1 and oH At > 1 away from the 
rational surface are also absent. The only requirement needed in this case is that 

oAt<l (51) 

(e.g., o At = 0.1 or 0.2), and it is for the purpose of accurately describing the tem- 
poral behavior of the wave, where co is the eigenmode frequency. These important 
results from the WKB-shooting code have also been confirmed by the gyrokinetic 
simulation of drift instabilities in a sheared slab [l]. It is, of course, a highly 
desirable situation, where the time step is solely determined by the mode frequency 
of interest. However, there is a caveat. 

The fact that correct physics can be reproduced in the region where k,, v,, At > 1 
is rather fortuitous for this case with a single rational surface. Because the 
amplitude of the mode is very, very small in this region, the error caused by 
X, g io At (instead of zero) is inconsequential. In general, one would not want to 
violate Eq. (50). Thus, even with the elimination of the modes related to oH by 
shear, the electron transit time requirement still has to be taken into account in the 
simulation. Interestingly, a gyrokinetic plasma under the influence of shear has the 
unique property of slow waves (low frequency eigenmodes) coexisting with fast par- 
ticles (thermal electrons), i.e., o/k,, vt, < 1, in the region away from the rational sur- 
face. Therefore, it is the most natural system for the application of the orbit averag- 
ing [16] or electron subcycling [17] schemes, and it requires no implicitness. This 
important feature also exists in the finite-b gyrokinetic plasma even in the absence 
of shear [27]. 

The scheme can work as follows. One pushes the ions and solves the field 
equation with a time step that satislies Eq. (51), o At q 1, while calculating the 
electron orbits with a time step of (k,,),,, vre At, 2 1, where At/At, = N, with 
N, 9 1. For successive At,%, the fields experienced by the electrons are constant in 
time, since they evolve on a much slower time scale than the electron transit time, 
i.e., w 4 (k,, Lx vt,. Moreover, by accumulating the information on the number 
density for the electrons for the successive Ate’s, one needs N, times less particles for 
the electrons than for the ions to achieve the same statistical accuracy. Therefore, 
the number of numerical operations under this subcycling scheme remains the same 
as that of a system which pushes particles with a time step prescribed by Eq. (51), 
i.e., the frequency of interest. 

The restrictions on grid spacings, Ax, and Ax,, , for a gyrokinetic plasma can be 
studied using the procedures similar to those in Refs. [3,4]. Here, Gaussian-shaped 
particles with the widths of a, and a,, are assumed. For k,,u,, + 1, k,, Ax,, 4 1, and 
kg k, $ k,, , Eq. (48) becomes 
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x f ~~,l~,w(~, ~x,Pl)” 
p= -m 

x f q exp 
L 

i(0 Llr) q-i (off Atj2 (k,p,J’ q2 = 0, 
1 

(52) 
rr=o 

where 
W( 6) - sin 6/Q 

is the shape function, k, E k, - 27cpplAx,, and n represents different charge sharing 
schemes [3, 10, 281. The additional harmonics for p f 0 are due to the nonphysical 
aliases arising from the use of a spatial grid. By assuming k, a, < 1 and oH dt 6 1 
and keeping only p = 0 and & 1 terms in Eq. (52), we arrive at 

’ EE 1 - (o~/w)~ (W(k, Ax,/2))” 

It can be shown that the largest numerical growth from Eq. (53), based on the 
NGP (n = 2) scheme, occurs at k, Ax, r z/1.4 for k,p,gO.21, i.e., Ax,/ps ZIG II. 
Numerical solutions from Eq. (52) also indicate that, in general, this type of 
instability becomes insignificant for 

Ax, "< ps, 

if one uses the linear interpolation (n = 4) scheme. The usual unmagnetized results 
can be recovered from Eqs. (52)-(54) by dropping the subscript I, and s~bst~~nt~~g 
wH and ps by mpe and A,, respectively. (So, the results here are not really sur- 
prising.) Since ps is at least 1 - 2 orders of magnitude larger than A0 for toka~~ak 
plasmas, Eq. (54) indeed represents a significant improvement. ~urthe~~~~re, 
Eq. (54) is not really a restriction, because one is compelled to use a grid spacing of 
Ax, 7 ps to provide the necessary resolution for modes with k,p3 cz 1. Thus, we 
are again in a best possible situation where the grid size is prescribed by the 
physical process of interest. This is quite different from the conventional sirn~lat~~~~ 
in which higher order interpolation schemes have to be utilized to increase 
Ax [29]. 

The dispersion relation describing the stability condition on the grid spacing 
in the parallel direction, Ax,,, can be derived from Eqs. (52) and (53) by rnak~~~ 
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the following substitutions: k,a, + k,,a,,, k, Ax, + k,,, Ax,,, where k,,, = 
k,, -2rcp/dx,,. The resulting equations are valid for k,a, < 1 and k, Ax, < 1. 
Specifically, Eq. (52) after the substitutions, yields 

q-; (w,v At)’ (k,pJ2 (k,,,/k,J2 q* 1 = 0. (55) 

One important characteristic of the equation is that k,, and k, and, in turn, Ax,, 
and Ax, are coupled through oN. Following the previous derivation based on the 
NGP scheme, we can show that the largest growth occurs at k,, Ax,, g 71/1.4 for 
k,p, ~0.21 regardless of the size of Ax,,-a rather unique feature. Numerical 
solutions from Eq. (55) indicate that the instability for k,p, 2 0.21 modes can be 
suppressed by using the linear interpolation scheme (n = 4) together with finite size 
particles. However, for k,p, < 0.21 modes, total stabilization may have to come 
from the quadratic interpolation scheme (n = 6). Although we have not studied the 
influence of shear on the behavior of grid instabilities, there are good reasons to 
believe that some degree of stabilization may occur. This view is supported in part 
by the recent study on finite-p gyrokinetic plasmas, which has shown that grid 
instability can be totally suppressed by (a very small amount of) magnetic pertur- 
bation [27]. At any rate, since there are essentially no restrictions on Ax,, , one can 
use a three-dimensional grid for an elongated system (L,, + L,) to simulate 
tokamak-type problems. The mode expansion scheme [9], which circumvents the 
use of a grid in the elongated direction, is a powerful tool but has its share of draw- 
backs as well. 

A brief discussion on the time step issue for the 3D gyrokinetic simulation is in 
order here. In general, At is determined by the largest wH (or the smallest k,p,) in 
the system, which may be much larger than the frequency of interest. Thus, the use 
of CCI, At 9 1 may be desirable and we have to deal with the problem of numerical 
growth. While instabilities due to large k,,‘s associated with the smallest k,pS can 
be suppressed by finite-size particles effects; those caused by small k,,‘s can only be 
eliminated by implicit schemes [ll, 13, 141. This is permissible, since the unstable 
modes all have k,pS < 1. However, as stated earlier, numerical growths due to large 
oH At are no longer a problem in the presence of shear and the electron subcycling 
scheme is applicable here as well. 

Let us now compare the stability conditions of the gyrokinetic plasma with other 
models of magnetized plasmas. As we all know, the properties for unmagnetized 
plasmas are similar to those for the model based on full particle dynamics [30] 
in which 2, limits the sizes for both dx, and Ax,,. As for the model using drift- 
kinetic electrons and Vlasov ions [S], the restrictions become cepi At 2 1 and 
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Ax,,= Ax, 7 /zD (assuming T, = T,). These conditions can easily be verified with 
the procedure described here with the assumption of unmagnetized ions. The main 
advantage of the model is the improvement in time step over the full dynamics co 
by a factor of J’Gi. The drift-kinetic model [31], which is not useful for 
tokamak physics, exists in the opposite limit of the gyrokinetic model, i.e., ps < i;,. 
It has the properties of (k,,/k) o,, At 2 1 and dx, 2 I,,. The stability condition 
on dx,, in this case is similar to the gyrokinetic model except for the fact that the 
characteristic length involved is I*,. All three models discussed here contain space 
charge waves. 

The last topic of this section concerns the issue of numerical noise. Langdon 1321 
has conducted a detailed analysis on the subject for the Vlasov plasma, which 
indicates that the fluctuations (and the noise) in the simulation and the usual 
theoretical predictions are in good agreement for ku, At 2 1 and dx 2 ;lD. Thus, if 
we prescribe Eq. (50) for electron transit time and Eq. (54) for grid spacing, kinetic 
theory results can also be used to examine the noise issue in our model. Ap~ly~~~ 
Eq. (43) to the fluctuation-dissipation theorem, one finds, for k2, < 1, 

which is a factor of (/Z,/P,)~ smaller than the fluctuation energy in a plasma where 
space charge waves are present. This salient feature has been investigated in 
Ref. [12] and it is found that the equilibrium electric field energy is at minimum in 
the gyrokinetic regime. As such, the numerical noise due to the discrete particle 
effects is also the lowest. In terms of fluctuating potentials, Eq. (56) can also be 
written as 

where N is the total number of simulation particles (electrons or ions) in a 
wavelength of 2x/k. Since the thermal noise level in the usual simulation codes is 
ie@(k)/T( z l/(&kiWD), the noise in the gyrokinetic plasma is reduced by a factor 
of ,in/ps for the same number of simulation particles. (An example of this property 
is shown in Figs. (1) and (2) in Ref. [l]. For tokamak-type parameters, the gain is 
much higher.) 

As we know, excessive noise tends to suppress the weaker instabilities, which is 
the reason why large density gradients have been used in the previous simulations 
of drift instabilities [S-S]. The process involved has not been well understoo 
Here, we will try to provide an explanation. One may argue that the noise-induced 
damping that overcomes the linear growth yI is caused by enhanced particle dif- 
fusion. Dupree’s resonance broadening process [33] relates the damping ~~~~erne~~ 
to diffusion through dy = k2D (for k zz k,). To estimate D. let us use the random 
walk model [34] which yields 

D = (Ax)‘/2 At s A(e@/T) lrmr p:Ql/2. 
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Assuming that d(e@/T) lrMs is given by Eq. (57), which is an upper bound estimate, 
we obtain 

Ay/Q, z kpJ2 fir (kp,)2 le@/TI/2 (59) 

for the gyrokinetic plasma. By comparison, the noise-induced damping rate in the 
Vlasov plasma, Ay/Qi s (kp,)2/(2 .J%kn,), is much larger for the same N. Thus, we 
can afford to use milder (more realistic) density and temperature gradients to 
simulate weaker instabilities with the present scheme. 

Nevertheless, the condition of Ay < yr for the modes of interest should always be 
satisfied in the simulation. This is supported by the simulation results reported in 
Refs. [l, 7,201. The condition, in turn, determines the allowable initial fluctuation 
amplitude and the total number of particles required for the simulation. For exam- 
ple, in the case of drift waves in slab geometry, where kips z 1 modes are most 
unstable, Eq. (59) gives Ay/Q, z le@/Tf. Letting y, z CD*, we obtain a rough estimate 
for the allowable initial noise level as 

(60) 

where L,( = l/l~,j) is the density scale length. It is commonly agreed that the 
saturation amplitude for these type of modes can be approximated by 
le@/TI,=, rp,/L, [21]. Thus, the condition imposed by Eq. (60) for the initial 
perturbation also agrees with the fact that the initial amplitude should be lower so 
that the nonlinear physics after saturation is not obscured by the noise. The 
derivation here makes the connection between the two requirements. Furthermore, 
all the modes in the simulation with a fixed k,, associated with yr, should also 
satisfy Eq. (60) initially, because Eq. (57) is constant for all the corresponding k’s in 
this case. The consequence is that the total number of particles in the simulation is 
given by Ntota, = const x (L,)2, where L, is the size in the perpendicular direction. 
This is true regardless of the size of the grid. Since the computer resources deter- 
mine the maximum allowable Ntota, in the simulation, they ultimately restrict the 
plasma volume for the gyrokinetic particle simulation. 

Thus, the only real limitation for our model comes from the noise consideration. 
Nevertheless, based on the current understanding of microturbulence in tokamaks 
[35], and with the availability of the present generation of supercomputers, 
realistic simulation can indeed be carried out with the model, which we will 
demonstrate later. 

VI. SIMULATION RESULTS 

At the present time, a two-dimensional (x, y, p, u,,) gyrokinetic particle code in 
slab geometry based on the techniques described in Sections III and IV has been 
developed. Here, we will use it to verify the numerical properties of the gyrokinetic 
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plasma as predicted in Section V and to demonstrate, by way of an example of drift 
instability, the utility and the usefulness of the multiple spatial scale expansion 
scheme (Section IV). 

In the simulation, the external magnetic field B = B,(z + Bs fi), is in the j, - z 
plane, where /eBl 6 1 is a constant (shear-free), and the zero&-order plasma 
inhomogeneity is in the x direction, i.e., K = KEt, where K is defined in Eq. (23). For 
simplicity, we assume that both the particles and the waves obey the periodic 
boundary condition in the x and y directions. In order to satisfy the reequirement 
imposed by the multiple spatial scale expansion, we have also set @(HZ = 0, 
n #O) = 0 in the code. Particle pushing is accomplished through the use of the 
predictor-corrector scheme [S] for finite-size particles [24, 251. 

Let us first present the simulation results for a homogeneous plasma. The 
parameters, in units of grid size Ax, and ion cyclotron frequency Q,, are: L, x L? 
(simulation volume) = (16 x 16) Ax,, Ntotal (simulation particles per species) = 
64 x 64, m,/nz, = 1837, TJT, = 1, a, (particle size)/Ax, = I, 8, = k,,/k, = 0.01, 
W, A-x, > k, Ax,) 2 (0.4m,0.4n), where (m, n)=O, + 1, 12 ,..., and Q, At (time 

10-l 
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FIG. 2. Frequency spectrum (a) and amplitude evolution (b) of e@/T, for pS/dxl =0.25 in a 
homogeneous plasma m thermal equilibrium. 
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step) = 3.27, which gives oH At lmax = 1.4 and oH(m = n) At = 1. The total number 
of time steps is t,,,/At = 700. 

For pJAx, = 0.25, all the modes in the simulation are stable. The frequency 
spectrum of the electrostatic potential e@(2, 1)/T,, for which (k,p,, k,p,) z 
(0.2,0.1), and the time evolution of the mode amplitude are shown in Figs. 2a and 
2b, respectively. The normal mode frequencies are slightly below the predicted 
values of w,/Q,= kO.19 given by Eq. (45) and the maximum fluctuation 
amplitude is also somewhat below the theoretical value of 9.8 % obtained from 
Eq. (57). A more careful numerical calculation using Eq. (52) with iz = 4 (linear 
interpolation scheme) gives w/Qi = kO.15 - iO.0045, which are in excellent 
agreement with the results in Fig. 2a. The resulting spectrum also reveals that most 
of the fluctuation energy resides with the normal modes of the system, although 
there is some enhancement for 101 < joHI. The enhancement, which is probably of 
the nonlinear nature and can become even more pronounced for some of the modes 
in the simulation, will not cause any computational difficulty in the simulation. On 

(k,p ,,kyps)=(0.08,0.04) 
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FIG. 3. Frequency spectrum (a) and amplitude evolution (b) of d/T, for ps/Ax, =O.l in a 
homogeneous plasma, when grid mstabihty is present. 
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the other hand, it is also very comforting to know that the fluctuation energies for 
/o/ > /wHJ are orders of magnitude smaller. 

The simulation results for the grid-induced instability in a homogeneous plasma 
with pJAx, =O.l are shown in Figs. 3a and 3b for (k,p,, k,p,) 2 (0.08,0.04). 
{Note that wH remains unchanged.) The normal mode frequencies and growth rate 
agree well with the predicted values of w/Q, = kO.125 + iO.00021 from Eq. (52). 
The fluctuation energy for this case is increased from the thermal level! of 
.&/a, = 24.6 %, as given by Eq. (57) to well over 50 % because of the ahsaing 
effects. 

The issue of numerical instability caused by a large time step has also been 
examined. For wH(m =n) At= 3 and ps/Ax, = 0.25, the numerical solution of 

0.10 
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FIG. 4. Frequency spectra of e@/T, for various values of (k,p,, k,p,) in a (32 x 32) dx, system (a) 

and a (32 x 128) dx, system (b), when drift instability is present. 
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Eq. (52) indicates that Im o/o, = 0.45 for (m, n) = (1, 1) and other highly unstable 
modes also exist in the system. In the simulation, a rapid increase of the electron 
kinetic energy has indeed been observed in just a few time steps. 

The examples given here confirm the fact that the numerical properties of a 
gyrokinetic plasma are characterized by oH and ps instead of o,, and 2, as in the 
usual Vlasov description. As for the properties associated with a three-dimensional 
code, their verification is beyong the scope of the present paper and will be reported 
elsewhere. 

Let us now discuss the case of an inhomogeneous plasma characterized by a con- 
stant density gradient. The simulation parameters are: L, x L, = (32 x 32) Ax,, 
N total = 128 x 128, m,/m, = 1837, TJT, = 4, a/Ax, = 2, 0, = 0.002, ps/Ax, = 4.286, 
qps = 0.214, (k,p,, k,p,) z (0.8m, O.&z), and 8, At = 1.09. These parameters give us 
the well-known drift instability in a shearless slab, which has been studied in detail 
in Refs. [20,21]. Here, we would like to point out some of the salient features 
related to the simulation model. For example, the real frequency for the most 
unstable (m=l,n=l) mode is Rew/~,=(k,~,)(K-,p,)Cl- UQPJ*I/ 
[l + (k,p,)‘] = 0.048 [21]. It agrees well with the simulation results shown in 
Fig. 4a, for which we have used the M = 4 scheme (Fig. 1) in the code. When M = 1 
is used instead, i.e., pI = 0, the real frequency has been observed to shift upward to 
w/Q, = 0.075. Thus, the numerical scheme given in Section III correctly represents 
the gyrophase-averaging procedure. 

When the simulation volume is increased to L, x L,, = (32 x 12X) Axl, the 
resulting frequency spectra are characterized by an energy cascade from 
k, ps g (0.8,O.S) to longer wavelength modes, as shown in Fig. 4b. Interestingly, the 
frequencies for the enhanced modes seem to track their respective linear values with 
the characteristic of do, z ok. The “instantaneous” diffusion coefficient vs time, 
calculated from Eqs. (32) and (33), is given in Fig. 5. It describes the time evolution 
of particle diffusion from the linear stage (Q, At = O-200) of the instability to the 
steady-state part of the development. Since the background inhomogeneity is held 
constant in time, the latter represents the true value associated with the steady 
state, which, incidentally, is substantially smaller than the Bohm coefficient of 
D = &. To verify the results shown in Fig. 5, we have also compared their time 
averaged values with those from the test particle measurements. Excellent 
agreement has been obtained. 
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FIG. 5. Particle diffusion coefficient vs time in the presence of drift instability. 



GYROKINETIC PARTICLE SIMULATION 257 

VII. DISCUSSION AND CONCLUSION 

In this paper, we have presented an efficient computational scheme for studying 
low frequency microinstabilities in tokamaks. Critical mumerical issues related to 
time step, grid spacing and noise level for the simulation plasma have also been 
examined in detail. We are convinced that gyrokinetic particle simulation scheme is 
indeed a viable approach and it will eventually help us in unravelling the mystery of 
anomalous transport in magnetically confined plasmas. 

In fact, the two-dimensional (x, y, p, u,,) gyrokinetic particle code described in 
Section VI has already been used to investigate various gradient-driven 
microinstabilities in slab geometry, providing us with some highly interesting results 
[20-221. For example, it is found that nonlinear E x B trapping of the electrons is 
the dominant mechanism for the saturation of collisionless drift instabilities [ZO]. 
In the case of ion temperature gradient drift instabilities (ql-modes), saturation 
comes from the nonlinearly generated zero-frequency current and pressure 
response, which cuts off the availability of the free energy source [22]. Most impor- 
tantly, the simulation results have indicated that steady-state transport is intrin- 
sically stochastic, in which electron-ion collisions also play a vital role [21]. As 
such, the parameter dependence is totally different from the estimates bas 
quasilinear diffusion. The latter in its various forms has been used for the dev 
ment of scaling laws [35]. Comparison of our results with those based on the 
equations will also help us in determining the regime of validity for sue 
approach in studying confinement problems. 

Recently. gyrokinetic formalism has been generalized to toroidal geometry 
[36, 371. It has also been shown that the aliases-induced numerical instabilities can 
be totally suppressed by magnetic perturbations [27] and that the thermal fluc- 
tuation level of shear-Alfven waves [38] can also be substantially reduced by the 
finite-/? effects” These new developments will undoubtedly help us in achieving our 
ultimate goal, i.e., a 3D finite-b toroidal code to simulate tokamak discharges. Such 
a code can also find applications in other areas of plasma physics. 

Let us conclude the paper by examining the kind of computer resources that o 
needs with the present model, using the Caltech tokamak [39] as an example. T 
revelant parameters are: a = 16 cm, R = 45 cm, ps = 0.1543 cm, T, = 25-180 eV, 
and p = 0.3 %. From Eq. (60), we can choose Ie@/Tl r 1 % as the maximum 
allowable level for the initial fluctuation. Since kp,~O.l is roughly the smallest 
wave number here, Eq. (57) gives N= lo6 as the required number of particles for 
the simulation. For an elongated 3D grid with dx, z ps, it gives approximately 8 
particles per cell. The memory and disk storage requirements for such a system is 
well within the capability of the Cray-II computer. Using a time step of dt = 1 ps, 
which is sufficient to resolve the observed low frequency fluctuations, we can 
simulate 2 ms of the discharge with 2000 time steps of particle pushing. For a con- 
servative figure of 50 ps per particle per time step on a Cray-II, the total CPU time 
is about 50 h. In our opinion, this is rather reasonable. For simulating large size 
tokamaks, e.g., TFTR at Princeton, an order of magnitude increase in the number 

581/72/l-18 
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of particles is needed, which may not be practical for the present generation of com- 
puters in terms of CPU time. On the other hand, one does not need to use the total 
cross section of the tokamak for simulating microinstabilities, which are believed to 
be active only in the outer region (q > 1) of the torus [ 19, 35, 391. 
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